среда, 26 ноября 2014 г.

Магия чисел и лживость индикаторов на forex. Начнём с Фибоначчи.

Многие пользуются торговыми индикаторами и искренне верят в их эффективность, даже не вдаваясь в подробности. Какие данные он обсчитывает? Кто вывел ту или иную закономерность и почему она должна работать на том или ином инструменте? Как правило, эти вопросы мало волнуют любителей цифровых граалей.
К примеру, многие ориентируются на скользящие средние и продают или покупают при их пересечении. А кто-нибудь помнит,что изначально на рынке среднюю начали применять совершенно в обратном значении?
Подразумевалась регрессия к среднему значению,т.е. идея заключалась в том,что рынок,как и всё вокруг стремится вернутся к среднему значению. Многие инвесторы и сейчас используют этот метод.
Я не использую готовые индикаторы,но советую тем, кто в них верит хотя бы разобраться в вопросе. Это знание будет лучшим аргументом в споре(только не со мной) о том,куда пойдёт цена.
Вот многие любят Фибо, например, а знаете ли вы что значат эти чёрточки на графике? Что в них такого магического, что цена должна их замечать? Давайте вспомним откуда это пошло, и потом сами себе ответите на эти вопросы. Удачи!!!

История цифр на Западе началась в 1202 году, когда подходило к концу строительство Шартрского кафедрального собора и завершался третий год правления английского короля Джона. В этом году в Италии появилась книга, озаглавленная «Liber Abaci», или «Книга о счётах». Все ее пятнадцать глав были написаны от руки — ведь до изобретения книгопечатания оставалось почти триста лет. Ее автору Леонардо Пизано было всего двадцать семь лет, и он был очень удачливым человеком: его книга получила одобрение самого императора Священной Римской империи Фридриха П. О лучшем нельзя и мечтать1.
Большую часть своей жизни Леонардо Пизано был известен как Фибоначчи, под этим именем он и вошел в историю. Его отца звали Боначио, а его — сын Боначио, т. е. Фибоначчи. Боначио означает 'простак', а фибоначчи — 'чурбан'. Однако Боначио, по-видимому, был не совсем простаком, поскольку он представлял Пизу в качестве консула во многих городах, а его сын Леонардо тем более не был чурбаном.
Фибоначчи был подвигнут к написанию «Liber Abaci» во время визита в Багио, процветающий алжирский город, где его отец пребывал в качестве пизанского консула. Там он столкнулся с чудесами индо-арабской системы счисления, перенесенной арабскими математиками на Запад во время крестовых походов. Ознакомившись со всеми вычислениями, выполняемыми в рамках этой системы, которые даже не снились математикам, использовавшим римскую систему счисления, он постарался изучить ее как можно более досконально. Чтобы поучиться у арабских математиков, живших по берегам Средиземного моря, он предпринял путешествие в Египет, Сирию, Грецию, Сицилию и Прованс.
В результате появилась книга, необычная со всех точек зрения. «Liber Abaci» открыла европейцам новый мир, в котором для представления чисел вместо букв, применяемых в еврейской, греческой и римской системах счисления, использовались цифры. Книга быстро привлекла внимание математиков как в Италии, так и по всей Европе.
«Liber Abaci» — это далеко не букварь по чтению и написанию новых численных символов. Фибоначчи начинает с объяснения, как по количеству символов, представляющих число, определить, включает ли оно только единицы, или десятки, или сотни и так далее. В следующих главах рассматриваются более сложные вопросы. Здесь мы находим вычисления, использующие все виды чисел и дробей, правила пропорции, извлечение квадратных корней и корней высших степеней и даже решение линейных и квадратных уравнений.
Каким бы остроумным и оригинальным ни было содержание книги Фибоначчи, она наверняка не смогла бы привлечь к себе много внимания за пределами узкого круга знатоков математики, если бы в ней излагались только теоретические вопросы. Огромный успех книги объяснялся тем, что
Фибоначчи насытил ее примерами практического применения изложенных в ней методов. Там, в частности, описаны и проиллюстрированы примерами многие новшества, которые благодаря новой системе счисления удалось применить в бухгалтерских расчетах, таких, как представление размера прибыли, операций с обменом денег, конвертацией мер и весов и, хотя ростовщичество было еще запрещено во многих местах, исчисления процентных выплат.
О том, насколько сильный ажиотаж вызвало появление книги Фибоначчи, можно судить по тому, что от нее пришел в восторг даже такой блистательный и творческий человек, каким был император Фридрих. Этот монарх, правивший с 1211-го по 1250 год, сочетал жестокость и властность с живым интересом к науке, искусству и философии государственного правления. В Сицилии он разрушил феодальные замки и упразднил их гарнизоны, обложил налогом и отрешил от управления государством духовенство, устранил все ограничения, препятствующие импорту, и отменил государственную монополию.
Фридрих не терпел никакого противодействия. В отличие от своего деда Фридриха Барбароссы, который был унижен папой в битве при Легнано в 1176 году, этот Фридрих, кажется, получал удовольствие от нескончаемых столкновений с папством. Его непреклонность принесла ему даже не одно, а два отлучения. Во втором случае папа Григорий IX объявил Фридриха лишенным императорской короны, назвав его еретиком, распутником и Антихристом. Фридрих ответил жестоким нападением на владения папы, а тем временем его флот задержал большую делегацию прелатов, направлявшихся в Рим для участия в соборе, который должен был лишить его императорской короны.
Фридрих окружил себя ведущими интеллектуалами своего времени, пригласив многих из них к себе в Палермо. Он построил на Сицилии несколько великолепнейших замков и в 1224 году основал университет для подготовки государственных служащих — первый европейский университет, получивший устав от монарха.
Фридрих был в восхищении от книги Фибоначчи. Как-то в 1220-х годах во время визита в Пизу он пожелал его увидеть. На аудиенции Фибоначчи решал алгебраические задачи, в том числе кубические уравнения, поочередно предлагаемые ему одним из многих придворных ученых. Это побудило его написать еще одну книгу — «Liber Quadratorum», или «Книгу о квадратах», которую он посвятил императору.
Фибоначчи широко известен благодаря короткому отрывку из «Liber Abaci», содержание которого производит впечатление математического чуда. В отрывке обсуждается задача о том, сколько кроликов родится в течение года от одной пары кроликов в предположении, что каждый месяц каждая пара рождает другую пару и что кролики начинают рожать с двухмесячного возраста. Фибоначчи доказывает, что в этом случае потомство исходной пары к концу года достигнет 233 пар.
Дальше он утверждает нечто еще более интересное. Предположим, что первая пара кроликов не будет размножаться до второго месяца. К четвертому месяцу начнут размножаться их первые двое отпрысков. Коль скоро процесс продолжится, числа пар в конце каждого месяца будут такими: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233. Здесь каждое последующее число является суммой двух предыдущих. Если кролики продолжат в том же духе в течение ста месяцев, число пар достигнет 354 224 848 179 261 915 075.
Этим не исчерпываются изумительные свойства чисел Фибоначчи. Разделим каждое из них на следующее за ним. Начиная с 3, будем получать 0,625. После 89 ответ будет 0,618; с увеличением чисел в ответе будет возрастать лишь число десятичных знаков после запятой:'.(Одним из удивительных свойств этих чисел является то, что число 0,618 получается, если извлечь квадратный корень из 5, который равен 2,24, вычесть 1 и затем разделить на 2; это алгебраическое выражение входит в формулу, представляющую числа Фибоначчи)
144
Разделим теперь каждое число, начиная с 2, на предыдущее. Будем получать 1,6. После 144 ответ будет всегда 1,618.
Греки знали это соотношение и называли его золотой пропорцией. Эта величина определяет пропорции Пантеона, игральных карт и кредитных карточек и здания Генеральной Ассамблеи Организации Объединенных Наций в Нью-Йорке. Горизонтальная перекладина большинства христианских крестов делит вертикальную в том же отношении: длина над перекладиной составляет 61,8% от длины под пересечением. Золотая пропорция обнаруживается также в природных явлениях — в цветочных лепестках, в листьях артишока, в черешках пальмовых листьев. Отношение длины части тела человека выше пупка к длине части ниже пупка у нормально сложенного человека равно 0,618. Длина фаланг пальцев, если последовательно идти от кончиков до ладони, соотносится так же 2)(Точнее говоря, по формуле Фибоначчи, отношение меньшей части к большей равно отношению большей части к целому).
Одним из наиболее романтичных воплощений отношения Фибоначчи являются пропорции и форма чудесной спирали. На приведенном рисунке видно, как она формируется на основе ряда квадратов, длины сторон которых определяются рядом Фибоначчи. Процесс начинается с построения двух маленьких квадратов одинакового размера.Построение равноугольной спирали с использованием чисел Фибоначчи
Начнем с квадрата со стороной, равной единице, пристроим к нему другой такой же квадрат, к ним пристроим квадрат со стороной, равной 2, к ним пристроим квадрат со стороной, равной 3. Продолжая в том же духе, получим квадраты со сторонами, равными 5, 8, 13, 21, 34 и так далее.
На основе двух их сторон строится примыкающий к ним квадрат со стороной удвоенного размера, затем квадраты со сторонами утроенного, упятеренного и т.д. размера. Заметьте, что таким образом строится последовательность прямоугольников, причем отношения между сторонами следующих друг за другом членов последовательности образуют золотую пропорцию. Затем соединяем противоположные углы квадратов, начиная с наименьшего, дугами, являющимися продолжением друг друга, и получаем спираль.
Нам знакома эта спираль, повторяемая в форме некоторых галактик, бараньего рога, многих морских раковин или гребешков океанских волн, по которым скользят любители серфинга. Способ построения делает ее форму неизменной, и она не зависит от размера первого квадрата, с которого началось построение: форма с ростом не меняется. Журналист Уильям Хоффер заметил: «Большая золотая спираль кажется естественным способом наращивания количества без изменения качества»
Кое-кто верит, что числа Фибоначчи можно использовать для различных предсказаний, в особенности относительно курса акций; такие предсказания сбываются достаточно часто, чтобы поддерживать постоянный интерес к ним. Ряд Фибоначчи настолько популярен, что в Калифорнии существует даже Американская ассоциация Фибоначчи при университете Санта-Кла- ры, опубликовавшая с 1962 года тысячи страниц исследований по этой теме.
«Liber Abaci» Фибоначчи стала впечатляющим первым шагом на пути создания инструмента, являющегося ключом к приручению риска. Но общество еще не было готово к применению чисел для анализа связанных с риском ситуаций. Во времена Фибоначчи люди чаще связывали риск с капризами природы. Им нужно было еще научиться рассматривать его как творение рук человеческих и набраться смелости бороться с судьбой, прежде чем они смогли подойти к технологии его укрощения. Для этого понадобилось не менее двухсот лет.

2 комментария:

  1. Тихий Трейдер, снимаю перед вами шляпу. На моем веку вы первый кто усомнился в основах традиционного ТА и обратил внимание на математические ляпы. Но ваша проблема в том, что, отрицая ложные представления, взамен вы не даете ничего. Поэтому получается "а воз и ныне там" - хотя по сути вы правы, но де факто все остается прежним. Когда впервые столкнулся с форексом, я тоже прошел экспресс-курсы трейдинга и ничтоже сумняше заглотил наживку тех.анализа. И только потом спустя годы, когда слил достаточно много, стал задумываться о причинах и обратил внимание основы ТА. А разобравшись, что есть что, обнаружил невероятную ситуацию. Создавалось впечатление, что некогда была создана интеллектуальная резервация, где явно дебилы засерают мозги другим и тем самовоспроизводятся многократно. А адекватные интеллектуалы молчат, то ли их не пускают в резервацию, то ли считают ниже своего достоинства разбираться в этом дерьме. Взять, к примеру, тот же графический инструмент "уровни Фибоначчи". По сути и как все объясняют, это отражение ряда пропорций Фибоначчи. Но любой математик вам скажет: в математике есть ряд чисел Фибоначчи, где отношение предыдущего числа к последующему стремится к "золотой пропорции", а ряда пропорций Фибоначчи просто не существует. Более того, "золотая пропорция" - это объективный закон природы, по которому построены телесно-предметные объекты, т.е. это закон сугубо статики. А рынок - это сугубо динамический объект, поэтому здесь закон "золотой пропорции" не применим, это равносильно вилкой черпать воду. Да, листья дерева, раковина улитки, человеческое тело и т.д. построены по "золотой пропорции", но в динамических процессах - движение звука, света, автобуса, цены и т.д. - на "золотую пропорцию" нет даже намека. Или взять среднюю скользящую, подумайте, что это такое? Из формулы хай+лоу\пополам следует, что это непрерывная линия, соединяющая средние значения баров\свечей. Т.е. это всего лишь интерпретация дискретов в непрерывность. И что? Ничего, потому что СС, как и RSI, MACDI и проч. - это производные самого графика. С таким же успехом можно наплодить множество других инструментов. Например, от фонаря переиначим формулу Пифагора Х = корень из суммы квадратов хай и лоу и по ней построим кривую. Чем не инструмент ТА? А в части торговых объемов на форексе вообще анекдот. Ладно, в биржевой торговле, где в стакане указываются объемы, но на межбанке это банковская тайна. Об объемах на форексе рассуждают или дилетанты, или дураки. Еще хуже обстоит дело с фундаментальным анализом. Общеизвестно, есть сторонники ФА и сторонники ТА, а многие исповедуют и то и другое. И себе во вред, потому что даже не задумываются о предпочтениях. Действительно, если движение цены обусловлено действием силовых факторов - фундаментальных новостей, то тогда о ТА не может быть речи. Но если руководствоваться объективными законами, по которым движется цена, то примат ТА становится очевидным, а ФА представляется вторичным. И по этим признакам можно различить два рода прогнозистов: аналитики, которые "купаются" в "инсайдерских" новостях, но не торгуют, и аналитики, которые торгуют, но без экивоков на новости. Разумеется, те и другие выдумывают черте что, но выдающимися болтунами, несомненно, являются фундаменталисты, которые, сказав одно, тут же могут заявить обратное. Короче говоря, сегодня тема рынка - это непаханное поле деятельности, где надо начинать с переосмысления и определения основных категорий и терминов, разрабатывать рабочую теорию рынка, а затем теорию биржевой торговли. А до тех пор ничего путного не получится. Будут только болтовня, кризисы и сливы.

    ОтветитьУдалить
    Ответы
    1. Спасибо за столь обширный комментарий.Согласен полностью, и за всю историю блога эти же мысли появляются в различных постах в разных аспектах. Я считаю, что для успешного трейдинга каждый должен работать над своей стратегией, не опираясь на догмы. Цифры с рынка есть у каждого, и этого достаточно.Нет никаких готовых стратегий.Нужно искать и развивать своё, что я и делаю все эти годы. Удачи!!!

      Удалить

Индикатор вершины цикла "Bitcoin Pi". Как точно определить пики рыночного цикла?

Индикатор Bitcoin Pi Cycle Top приобрёл уже легендарный статус в сообществе Bitcoin за его сверхъестественную точность в определении пиков ...