среда, 26 ноября 2014 г.

Магия чисел и лживость индикаторов на forex. Начнём с Фибоначчи.

Многие пользуются торговыми индикаторами и искренне верят в их эффективность, даже не вдаваясь в подробности. Какие данные он обсчитывает? Кто вывел ту или иную закономерность и почему она должна работать на том или ином инструменте? Как правило, эти вопросы мало волнуют любителей цифровых граалей.
К примеру, многие ориентируются на скользящие средние и продают или покупают при их пересечении. А кто-нибудь помнит,что изначально на рынке среднюю начали применять совершенно в обратном значении?
Подразумевалась регрессия к среднему значению,т.е. идея заключалась в том,что рынок,как и всё вокруг стремится вернутся к среднему значению. Многие инвесторы и сейчас используют этот метод.
Я не использую готовые индикаторы,но советую тем, кто в них верит хотя бы разобраться в вопросе. Это знание будет лучшим аргументом в споре(только не со мной) о том,куда пойдёт цена.
Вот многие любят Фибо, например, а знаете ли вы что значат эти чёрточки на графике? Что в них такого магического, что цена должна их замечать? Давайте вспомним откуда это пошло, и потом сами себе ответите на эти вопросы. Удачи!!!

История цифр на Западе началась в 1202 году, когда подходило к концу строительство Шартрского кафедрального собора и завершался третий год правления английского короля Джона. В этом году в Италии появилась книга, озаглавленная «Liber Abaci», или «Книга о счётах». Все ее пятнадцать глав были написаны от руки — ведь до изобретения книгопечатания оставалось почти триста лет. Ее автору Леонардо Пизано было всего двадцать семь лет, и он был очень удачливым человеком: его книга получила одобрение самого императора Священной Римской империи Фридриха П. О лучшем нельзя и мечтать1.
Большую часть своей жизни Леонардо Пизано был известен как Фибоначчи, под этим именем он и вошел в историю. Его отца звали Боначио, а его — сын Боначио, т. е. Фибоначчи. Боначио означает 'простак', а фибоначчи — 'чурбан'. Однако Боначио, по-видимому, был не совсем простаком, поскольку он представлял Пизу в качестве консула во многих городах, а его сын Леонардо тем более не был чурбаном.
Фибоначчи был подвигнут к написанию «Liber Abaci» во время визита в Багио, процветающий алжирский город, где его отец пребывал в качестве пизанского консула. Там он столкнулся с чудесами индо-арабской системы счисления, перенесенной арабскими математиками на Запад во время крестовых походов. Ознакомившись со всеми вычислениями, выполняемыми в рамках этой системы, которые даже не снились математикам, использовавшим римскую систему счисления, он постарался изучить ее как можно более досконально. Чтобы поучиться у арабских математиков, живших по берегам Средиземного моря, он предпринял путешествие в Египет, Сирию, Грецию, Сицилию и Прованс.
В результате появилась книга, необычная со всех точек зрения. «Liber Abaci» открыла европейцам новый мир, в котором для представления чисел вместо букв, применяемых в еврейской, греческой и римской системах счисления, использовались цифры. Книга быстро привлекла внимание математиков как в Италии, так и по всей Европе.
«Liber Abaci» — это далеко не букварь по чтению и написанию новых численных символов. Фибоначчи начинает с объяснения, как по количеству символов, представляющих число, определить, включает ли оно только единицы, или десятки, или сотни и так далее. В следующих главах рассматриваются более сложные вопросы. Здесь мы находим вычисления, использующие все виды чисел и дробей, правила пропорции, извлечение квадратных корней и корней высших степеней и даже решение линейных и квадратных уравнений.
Каким бы остроумным и оригинальным ни было содержание книги Фибоначчи, она наверняка не смогла бы привлечь к себе много внимания за пределами узкого круга знатоков математики, если бы в ней излагались только теоретические вопросы. Огромный успех книги объяснялся тем, что
Фибоначчи насытил ее примерами практического применения изложенных в ней методов. Там, в частности, описаны и проиллюстрированы примерами многие новшества, которые благодаря новой системе счисления удалось применить в бухгалтерских расчетах, таких, как представление размера прибыли, операций с обменом денег, конвертацией мер и весов и, хотя ростовщичество было еще запрещено во многих местах, исчисления процентных выплат.
О том, насколько сильный ажиотаж вызвало появление книги Фибоначчи, можно судить по тому, что от нее пришел в восторг даже такой блистательный и творческий человек, каким был император Фридрих. Этот монарх, правивший с 1211-го по 1250 год, сочетал жестокость и властность с живым интересом к науке, искусству и философии государственного правления. В Сицилии он разрушил феодальные замки и упразднил их гарнизоны, обложил налогом и отрешил от управления государством духовенство, устранил все ограничения, препятствующие импорту, и отменил государственную монополию.
Фридрих не терпел никакого противодействия. В отличие от своего деда Фридриха Барбароссы, который был унижен папой в битве при Легнано в 1176 году, этот Фридрих, кажется, получал удовольствие от нескончаемых столкновений с папством. Его непреклонность принесла ему даже не одно, а два отлучения. Во втором случае папа Григорий IX объявил Фридриха лишенным императорской короны, назвав его еретиком, распутником и Антихристом. Фридрих ответил жестоким нападением на владения папы, а тем временем его флот задержал большую делегацию прелатов, направлявшихся в Рим для участия в соборе, который должен был лишить его императорской короны.
Фридрих окружил себя ведущими интеллектуалами своего времени, пригласив многих из них к себе в Палермо. Он построил на Сицилии несколько великолепнейших замков и в 1224 году основал университет для подготовки государственных служащих — первый европейский университет, получивший устав от монарха.
Фридрих был в восхищении от книги Фибоначчи. Как-то в 1220-х годах во время визита в Пизу он пожелал его увидеть. На аудиенции Фибоначчи решал алгебраические задачи, в том числе кубические уравнения, поочередно предлагаемые ему одним из многих придворных ученых. Это побудило его написать еще одну книгу — «Liber Quadratorum», или «Книгу о квадратах», которую он посвятил императору.
Фибоначчи широко известен благодаря короткому отрывку из «Liber Abaci», содержание которого производит впечатление математического чуда. В отрывке обсуждается задача о том, сколько кроликов родится в течение года от одной пары кроликов в предположении, что каждый месяц каждая пара рождает другую пару и что кролики начинают рожать с двухмесячного возраста. Фибоначчи доказывает, что в этом случае потомство исходной пары к концу года достигнет 233 пар.
Дальше он утверждает нечто еще более интересное. Предположим, что первая пара кроликов не будет размножаться до второго месяца. К четвертому месяцу начнут размножаться их первые двое отпрысков. Коль скоро процесс продолжится, числа пар в конце каждого месяца будут такими: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233. Здесь каждое последующее число является суммой двух предыдущих. Если кролики продолжат в том же духе в течение ста месяцев, число пар достигнет 354 224 848 179 261 915 075.
Этим не исчерпываются изумительные свойства чисел Фибоначчи. Разделим каждое из них на следующее за ним. Начиная с 3, будем получать 0,625. После 89 ответ будет 0,618; с увеличением чисел в ответе будет возрастать лишь число десятичных знаков после запятой:'.(Одним из удивительных свойств этих чисел является то, что число 0,618 получается, если извлечь квадратный корень из 5, который равен 2,24, вычесть 1 и затем разделить на 2; это алгебраическое выражение входит в формулу, представляющую числа Фибоначчи)
144
Разделим теперь каждое число, начиная с 2, на предыдущее. Будем получать 1,6. После 144 ответ будет всегда 1,618.
Греки знали это соотношение и называли его золотой пропорцией. Эта величина определяет пропорции Пантеона, игральных карт и кредитных карточек и здания Генеральной Ассамблеи Организации Объединенных Наций в Нью-Йорке. Горизонтальная перекладина большинства христианских крестов делит вертикальную в том же отношении: длина над перекладиной составляет 61,8% от длины под пересечением. Золотая пропорция обнаруживается также в природных явлениях — в цветочных лепестках, в листьях артишока, в черешках пальмовых листьев. Отношение длины части тела человека выше пупка к длине части ниже пупка у нормально сложенного человека равно 0,618. Длина фаланг пальцев, если последовательно идти от кончиков до ладони, соотносится так же 2)(Точнее говоря, по формуле Фибоначчи, отношение меньшей части к большей равно отношению большей части к целому).
Одним из наиболее романтичных воплощений отношения Фибоначчи являются пропорции и форма чудесной спирали. На приведенном рисунке видно, как она формируется на основе ряда квадратов, длины сторон которых определяются рядом Фибоначчи. Процесс начинается с построения двух маленьких квадратов одинакового размера.Построение равноугольной спирали с использованием чисел Фибоначчи
Начнем с квадрата со стороной, равной единице, пристроим к нему другой такой же квадрат, к ним пристроим квадрат со стороной, равной 2, к ним пристроим квадрат со стороной, равной 3. Продолжая в том же духе, получим квадраты со сторонами, равными 5, 8, 13, 21, 34 и так далее.
На основе двух их сторон строится примыкающий к ним квадрат со стороной удвоенного размера, затем квадраты со сторонами утроенного, упятеренного и т.д. размера. Заметьте, что таким образом строится последовательность прямоугольников, причем отношения между сторонами следующих друг за другом членов последовательности образуют золотую пропорцию. Затем соединяем противоположные углы квадратов, начиная с наименьшего, дугами, являющимися продолжением друг друга, и получаем спираль.
Нам знакома эта спираль, повторяемая в форме некоторых галактик, бараньего рога, многих морских раковин или гребешков океанских волн, по которым скользят любители серфинга. Способ построения делает ее форму неизменной, и она не зависит от размера первого квадрата, с которого началось построение: форма с ростом не меняется. Журналист Уильям Хоффер заметил: «Большая золотая спираль кажется естественным способом наращивания количества без изменения качества»
Кое-кто верит, что числа Фибоначчи можно использовать для различных предсказаний, в особенности относительно курса акций; такие предсказания сбываются достаточно часто, чтобы поддерживать постоянный интерес к ним. Ряд Фибоначчи настолько популярен, что в Калифорнии существует даже Американская ассоциация Фибоначчи при университете Санта-Кла- ры, опубликовавшая с 1962 года тысячи страниц исследований по этой теме.
«Liber Abaci» Фибоначчи стала впечатляющим первым шагом на пути создания инструмента, являющегося ключом к приручению риска. Но общество еще не было готово к применению чисел для анализа связанных с риском ситуаций. Во времена Фибоначчи люди чаще связывали риск с капризами природы. Им нужно было еще научиться рассматривать его как творение рук человеческих и набраться смелости бороться с судьбой, прежде чем они смогли подойти к технологии его укрощения. Для этого понадобилось не менее двухсот лет.

2 комментария:

  1. Тихий Трейдер, снимаю перед вами шляпу. На моем веку вы первый кто усомнился в основах традиционного ТА и обратил внимание на математические ляпы. Но ваша проблема в том, что, отрицая ложные представления, взамен вы не даете ничего. Поэтому получается "а воз и ныне там" - хотя по сути вы правы, но де факто все остается прежним. Когда впервые столкнулся с форексом, я тоже прошел экспресс-курсы трейдинга и ничтоже сумняше заглотил наживку тех.анализа. И только потом спустя годы, когда слил достаточно много, стал задумываться о причинах и обратил внимание основы ТА. А разобравшись, что есть что, обнаружил невероятную ситуацию. Создавалось впечатление, что некогда была создана интеллектуальная резервация, где явно дебилы засерают мозги другим и тем самовоспроизводятся многократно. А адекватные интеллектуалы молчат, то ли их не пускают в резервацию, то ли считают ниже своего достоинства разбираться в этом дерьме. Взять, к примеру, тот же графический инструмент "уровни Фибоначчи". По сути и как все объясняют, это отражение ряда пропорций Фибоначчи. Но любой математик вам скажет: в математике есть ряд чисел Фибоначчи, где отношение предыдущего числа к последующему стремится к "золотой пропорции", а ряда пропорций Фибоначчи просто не существует. Более того, "золотая пропорция" - это объективный закон природы, по которому построены телесно-предметные объекты, т.е. это закон сугубо статики. А рынок - это сугубо динамический объект, поэтому здесь закон "золотой пропорции" не применим, это равносильно вилкой черпать воду. Да, листья дерева, раковина улитки, человеческое тело и т.д. построены по "золотой пропорции", но в динамических процессах - движение звука, света, автобуса, цены и т.д. - на "золотую пропорцию" нет даже намека. Или взять среднюю скользящую, подумайте, что это такое? Из формулы хай+лоу\пополам следует, что это непрерывная линия, соединяющая средние значения баров\свечей. Т.е. это всего лишь интерпретация дискретов в непрерывность. И что? Ничего, потому что СС, как и RSI, MACDI и проч. - это производные самого графика. С таким же успехом можно наплодить множество других инструментов. Например, от фонаря переиначим формулу Пифагора Х = корень из суммы квадратов хай и лоу и по ней построим кривую. Чем не инструмент ТА? А в части торговых объемов на форексе вообще анекдот. Ладно, в биржевой торговле, где в стакане указываются объемы, но на межбанке это банковская тайна. Об объемах на форексе рассуждают или дилетанты, или дураки. Еще хуже обстоит дело с фундаментальным анализом. Общеизвестно, есть сторонники ФА и сторонники ТА, а многие исповедуют и то и другое. И себе во вред, потому что даже не задумываются о предпочтениях. Действительно, если движение цены обусловлено действием силовых факторов - фундаментальных новостей, то тогда о ТА не может быть речи. Но если руководствоваться объективными законами, по которым движется цена, то примат ТА становится очевидным, а ФА представляется вторичным. И по этим признакам можно различить два рода прогнозистов: аналитики, которые "купаются" в "инсайдерских" новостях, но не торгуют, и аналитики, которые торгуют, но без экивоков на новости. Разумеется, те и другие выдумывают черте что, но выдающимися болтунами, несомненно, являются фундаменталисты, которые, сказав одно, тут же могут заявить обратное. Короче говоря, сегодня тема рынка - это непаханное поле деятельности, где надо начинать с переосмысления и определения основных категорий и терминов, разрабатывать рабочую теорию рынка, а затем теорию биржевой торговли. А до тех пор ничего путного не получится. Будут только болтовня, кризисы и сливы.

    ОтветитьУдалить
    Ответы
    1. Спасибо за столь обширный комментарий.Согласен полностью, и за всю историю блога эти же мысли появляются в различных постах в разных аспектах. Я считаю, что для успешного трейдинга каждый должен работать над своей стратегией, не опираясь на догмы. Цифры с рынка есть у каждого, и этого достаточно.Нет никаких готовых стратегий.Нужно искать и развивать своё, что я и делаю все эти годы. Удачи!!!

      Удалить

«СЕЙЧАС ОТЛИЧНОЕ ВРЕМЯ ДЛЯ ПОКУПКИ!!!» Можно уходить на выходные?

Так сказал президент США. Если это сообщение было для вас слишком размытым, то заметьте, что он использовал все заглавные буквы и три !!!! в...